Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Asunto principal
Tipo del documento
Intervalo de año
1.
researchsquare; 2024.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4177301.v1

RESUMEN

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak have accentuated the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2-subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, expanding on our previous work with S2-based vaccines, we developed a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protected transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in Fc-g receptor knockout mice revealed that antibody-based cellular effector mechanisms played a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.

2.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.03.13.584690

RESUMEN

The efficacy of polyclonal antibody responses is inherently linked to paratope diversity, as generated through V(D)J recombination and somatic hypermutation (SHM). These processes arose in early jawed vertebrates; however, little is known about how immunoglobulin diversity, mutability, and hypermutation have evolved in tandem with another more ubiquitous feature of protein-coding DNA - codon optimality. Here, we explore these relationships through analysis of germline IG genes, natural V(D)J repertoires, serum VH usage, and monoclonal antibody (mAb) expression, each through the lens of multiple optimality metrics. Strikingly, proteomic serum IgG sequencing showed that germline IGHV codon optimality positively correlated with VH representation after influenza vaccination, and in vitro, codon deoptimization of mAbs with synonymous amino acid sequences caused consistent expression loss. Germline V genes exhibit a range of codon optimality that is maintained by functionality, and inversely related to mutability. SHM caused a load-dependent deoptimization of IGH VDJ repertoires within human tonsils, bone marrow, and lymph nodes (including SARS-CoV-2-specific clones from mRNA vaccinees), influenza-infected mice, and zebrafish. Comparison of natural mutation profiles to true random suggests the presence of selective pressures that constrain deoptimization. These findings shed light on immunoglobulin evolution, providing unanticipated insights into the antagonistic relationship between variable region diversification, codon optimality, and antibody secretion; ultimately, the need for diversity takes precedence over that for the most efficient expression of the antibody repertoire.


Asunto(s)
Gripe Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA